Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example The easiest way to get into machine learning

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781783553112
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Python and Machine Learning FREE CHAPTER 2. Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms 3. Spam Email Detection with Naive Bayes 4. News Topic Classification with Support Vector Machine 5. Click-Through Prediction with Tree-Based Algorithms 6. Click-Through Prediction with Logistic Regression 7. Stock Price Prediction with Regression Algorithms 8. Best Practices

Click-through prediction with decision tree

After several examples, it is now time to predict ad click-through with the decision tree algorithm we just thoroughly learned and practiced. We will use the dataset from a Kaggle machine learning competition Click-Through Rate Prediction (https://www.kaggle.com/c/avazu-ctr-prediction).

For now, we only take the first 100,000 samples from the train file (unzipped from the train.gz file from https://www.kaggle.com/c/avazu-ctr-prediction/data) for training the decision tree and the first 100,000 samples from the test file (unzipped from the test.gz file from the same page) for prediction purposes.

The data fields are described as follows:

  • id: ad identifier, such as 1000009418151094273, 10000169349117863715
  • click: 0 for non-click, 1 for click
  • hour: in the format of YYMMDDHH, for example, 14102100
  • C1: anonymized categorical variable, such as 1005, 1002
  • banner_pos: where a...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image