SciPy
This section shows useful SciPy functions:
scipy.fftpack
fftshift(x, axes=None)
: This function shifts the zero-frequency component to the center of the spectrum
rfft(x, n=None, axis=-1, overwrite_x=0)
: This function performs a discrete Fourier transform of an array containing real values
scipy.signal
detrend(data, axis=-1, type='linear', bp=0)
: This function removes the linear trend or a constant from the data
medfilt(volume, kernel_size=None)
: This function applies a median filter on an array
wiener(im, mysize=None, noise=None)
: This function applies a Wiener filter on an array
scipy.stats
anderson(x, dist='norm')
: This function performs the Anderson-Darling test for data coming from a specified distribution
kruskal(*args)
: This function performs the Kruskal-Wallis H test for data
normaltest(a, axis=0)
: This function tests whether data complies to the normal distribution
scoreatpercentile(a, per, limit=(), interpolation_method='fraction')
: This function...