Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Optimizing Databricks Workloads

You're reading from   Optimizing Databricks Workloads Harness the power of Apache Spark in Azure and maximize the performance of modern big data workloads

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781801819077
Length 230 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Anshul Bhatnagar Anshul Bhatnagar
Author Profile Icon Anshul Bhatnagar
Anshul Bhatnagar
Sarthak Sarbahi Sarthak Sarbahi
Author Profile Icon Sarthak Sarbahi
Sarthak Sarbahi
Anirudh Kala Anirudh Kala
Author Profile Icon Anirudh Kala
Anirudh Kala
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: Introduction to Azure Databricks
2. Chapter 1: Discovering Databricks FREE CHAPTER 3. Chapter 2: Batch and Real-Time Processing in Databricks 4. Chapter 3: Learning about Machine Learning and Graph Processing in Databricks 5. Section 2: Optimization Techniques
6. Chapter 4: Managing Spark Clusters 7. Chapter 5: Big Data Analytics 8. Chapter 6: Databricks Delta Lake 9. Chapter 7: Spark Core 10. Section 3: Real-World Scenarios
11. Chapter 8: Case Studies 12. Other Books You May Enjoy

Understanding shuffle partitions

Every time Spark performs a wide transformation or aggregations, shuffling of data across the nodes occurs. And during these shuffle operations, Spark, by default, changes the partitions of the DataFrame. For example, when creating a DataFrame, it may have 10 partitions, but as soon as the shuffle occurs, Spark may change the partitions of the DataFrame to 200. These are what we call the shuffle partitions.

This is a default behavior in Spark, but it can be altered to improve the performance of Spark jobs. We can also confirm the default behavior by running the following line of code:

spark.conf.get('spark.sql.shuffle.partitions')

This returns the output of 200. This means that Spark will change the shuffle partitions to 200 by default. To alter this configuration, we can run the following code, which configures the shuffle partitions to 8:

spark.conf.set('spark.sql.shuffle.partitions',8)

You may be wondering why we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image