Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Neuro-Symbolic AI

You're reading from   Neuro-Symbolic AI Design transparent and trustworthy systems that understand the world as you do

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781804617625
Length 196 pages
Edition 1st Edition
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Alexiei Dingli Alexiei Dingli
Author Profile Icon Alexiei Dingli
Alexiei Dingli
David Farrugia David Farrugia
Author Profile Icon David Farrugia
David Farrugia
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: The Evolution and Pitfalls of AI 2. Chapter 2: The Rise and Fall of Symbolic AI FREE CHAPTER 3. Chapter 3: The Neural Networks Revolution 4. Chapter 4: The Need for Explainable AI 5. Chapter 5: Introducing Neuro-Symbolic AI – the Next Level of AI 6. Chapter 6: A Marriage of Neurons and Symbols – Opportunities and Obstacles 7. Chapter 7: Applications of Neuro-Symbolic AI 8. Chapter 8: Neuro-Symbolic Programming in Python 9. Chapter 9: The Future of AI 10. Index 11. Other Books You May Enjoy

The challenges of combining neurons and symbols

So far, we have discussed the inner dynamics of NSAI and how this new class of computing promises to take machine intelligence to the next level. There are, however, a few obstacles that we need to overcome when designing an NSAI system. In this section, we will delve into the most prominent challenges and limitations of NSAI.

Knowledge and symbolic representation

Perhaps one of the more prominent obstacles to face when designing NSAI systems is knowledge and symbol representation. As part of the symbolic component, we have two main challenges:

  • Robustly decomposing our problem space into symbols
  • Representing the extracted symbols in a way that a computer (more specifically, an NN) can understand

In the previous chapters, we discussed how existing NSAI algorithms mostly rely on a domain-specific language (DSL) to represent the symbols and their respective relations as first-order logic. The DSL acts as a descriptor...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image