Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Social Media Mining with Python

You're reading from   Mastering Social Media Mining with Python Unearth deeper insight from your social media data with advanced Python techniques for acquisition and analysis

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781783552016
Length 338 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Marco Bonzanini Marco Bonzanini
Author Profile Icon Marco Bonzanini
Marco Bonzanini
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Social Media, Social Data, and Python FREE CHAPTER 2. #MiningTwitter – Hashtags, Topics, and Time Series 3. Users, Followers, and Communities on Twitter 4. Posts, Pages, and User Interactions on Facebook 5. Topic Analysis on Google+ 6. Questions and Answers on Stack Exchange 7. Blogs, RSS, Wikipedia, and Natural Language Processing 8. Mining All the Data! 9. Linked Data and the Semantic Web

Building complex data pipelines

As soon as the data tools that we're building grow into something a bigger than a simple script, it's useful to split data pre-processing tasks into small units, in order to map all the steps and dependencies of the data pipeline.

With the term data pipeline, we intend a sequence of data processing operations, which cleans, augments, and manipulates the original data, transforming it into something digestible by the analytics engine. Any non-trivial data analytics project will require a data pipeline that is composed of a number of steps.

In the prototyping phase, it is common to split these steps into different scripts, which are then run individually, for example:

$ python download_some_data.py
$ python clean_some_data.py
$ python augment_some_data.py

Each script in this example produces the output for the following script, so there are dependencies between the different steps. We can refactor data processing scripts into a large script that does everything, and then run it in one go:

$ python do_everything.py

The content of such script might look similar to the following code:

if __name__ == '__main__': 
  download_some_data() 
  clean_some_data() 
  augment_some_data() 

Each of the preceding functions will contain the main logic of the initial individual scripts. The problem with this approach is that errors can occur in the data pipeline, so we should also include a lot of boilerplate code with try and except to have control over the exceptions that might occur. Moreover, parameterizing this kind of code might feel a little clumsy.

In general, when moving from prototyping to something more stable, it's worth thinking about the use of a data orchestrator, also called workflow manager. A good example of this kind of tool in Python is given by Luigi, an open source project introduced by Spotify. The advantages of using a data orchestrator such as Luigi include the following:

  • Task templates: Each data task is defined as a class with a few methods that define how the task runs, its dependencies, and its output

Dependency graph: Visual tools assist the data engineer to visualize and understand the dependencies between tasks Recovery from intermediate failure: If the data pipeline fails halfway through the tasks, it's possible to restart it from the last consistent state

  • Integration with command-line interface, as well as system job schedulers such as cron job
  • Customizable error reporting

We won't dig into all the features of Luigi, as a detailed discussion would go beyond the scope of this book, but the readers are encouraged to take a look at this tool and use it to produce a more elegant, reproducible, and easily maintainable and expandable data pipeline.

You have been reading a chapter from
Mastering Social Media Mining with Python
Published in: Jul 2016
Publisher: Packt
ISBN-13: 9781783552016
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image