Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering MongoDB 7.0

You're reading from   Mastering MongoDB 7.0 Achieve data excellence by unlocking the full potential of MongoDB

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781835460474
Length 434 pages
Edition 4th Edition
Languages
Tools
Concepts
Arrow right icon
Authors (7):
Arrow left icon
Rajesh Nair Rajesh Nair
Author Profile Icon Rajesh Nair
Rajesh Nair
Leandro Domingues Leandro Domingues
Author Profile Icon Leandro Domingues
Leandro Domingues
Mr. Elie Hannouch Mr. Elie Hannouch
Author Profile Icon Mr. Elie Hannouch
Mr. Elie Hannouch
Arek Borucki Arek Borucki
Author Profile Icon Arek Borucki
Arek Borucki
Rachelle Palmer Rachelle Palmer
Author Profile Icon Rachelle Palmer
Rachelle Palmer
Malak Abu Hammad Malak Abu Hammad
Author Profile Icon Malak Abu Hammad
Malak Abu Hammad
Marko Aleksendrić Marko Aleksendrić
Author Profile Icon Marko Aleksendrić
Marko Aleksendrić
+3 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Chapter 1: Introduction to MongoDB FREE CHAPTER 2. Chapter 2: The MongoDB Architecture 3. Chapter 3: Developer Tools 4. Chapter 4: Connecting to MongoDB 5. Chapter 5: CRUD Operations and Basic Queries 6. Chapter 6: Schema Design and Data Modeling 7. Chapter 7: Advanced Querying in MongoDB 8. Chapter 8: Aggregation 9. Chapter 9: Multi-Document ACID Transactions 10. Chapter 10: Index Optimization 11. Chapter 11: MongoDB Atlas: Powering the Future of Developer Data Platforms 12. Chapter 12: Monitoring and Backup in MongoDB 13. Chapter 13: Introduction to Atlas Search 14. Chapter 14: Integrating Applications with MongoDB 15. Chapter 15: Security 16. Chapter 16: Auditing 17. Chapter 17: Encryption 18. Index 19. Other Books You May Enjoy

Schema design for relational databases

In terms of structured relational databases, the paramount considerations are making sure your data is reliable, and everything runs efficiently. Two foundational principles drive this focus:

  • Avoiding data anomalies
  • Reducing data redundancy

In the context of a relational database management system (RDBMS), a data anomaly is an inconsistency in the dataset resulting from a write operation, such as insert, delete, or update. For example, a university stores student information such as email, phone numbers, and addresses in multiple tables or columns. Over time, a student's phone number changes, and the university administration updates the phone number field in one of the tables or columns but forgets to update the others. As a result, the system now has conflicting information for the same student's phone number. Such a situation creates a data anomaly known as an update anomaly.

Data redundancy refers to the unnecessary...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime