In this day and age, computer/internet users expect instant output, no matter what applications they are using, and developers often find themselves struggling with the problem of providing better speed for their applications. In terms of usage, concurrency will continue to be one of the main players in the field of programming, providing unique and innovative solutions to those problems. As mentioned earlier, whether it be video game design, mobile apps, desktop software, or web development, concurrency is, and will be, omnipresent in the near future.
Given the need for concurrency support in applications, some might argue that concurrent programming will also become more standard in academia. Even though specific topics in concurrency and parallelism are being covered in computer science courses, in-depth, complex subjects on concurrent programming (both theoretical and applied subjects) will be implemented in undergraduate and graduate courses, to better prepare students for the industry, where concurrency is being used every day. Computer science courses on building concurrent systems, studying data flows, and analyzing concurrent and parallel structures will only be the beginning.
Others might have a more skeptical view of the future of concurrent programming. Some say that concurrency is really about dependency analysis: a sub-field of compiler theory that analyzes execution-order constraints between statements/instructions, and determines whether it is safe for a program to reorder or parallelize its statements. Furthermore, since only a very small number of programmers truly understand concurrency and all of its intricacies, there will be a push for compilers, along with support from the operating system, to take on the responsibility of actually implementing concurrency into the programs they compile on their own.
Specifically, in the future programmers will not have to concern themselves with the concepts and problems of concurrent programming, nor should they. An algorithm implemented on the compiler-level should look at the program being compiled, analyze the statements and instructions, produce a dependency graph to determine the optimal order of execution for those statements and instructions, and apply concurrency/parallelism where it is appropriate and efficient. In short, the combination of the low number of programmers understanding and being able to effectively work with concurrent systems and the possibility of automating the design of concurrency will lead to a decrease in interest in concurrent programming.
In the end, only time will tell what the future holds for concurrent programming. We programmers can only look at how concurrency is currently being used in the real world, and determine whether it is worth learning or not: which, as we have seen in this case, it is. Furthermore, even though there are strong connections between designing concurrent programs and dependency analysis, I personally see concurrent programming as a more intricate and involved process, which might be very difficult to achieve through automation.
Concurrent programming is indeed extremely complicated and very hard to get right, but that also means the knowledge gained through the process will be beneficial and useful to any programmer, and I see that as a good enough reason to learn about concurrency. The ability to analyze the problems of program speedup, restructure your programs into different independent tasks, and coordinate those tasks to use the same resources, are the main skills that programmers build while working with concurrency, and knowledge of these topics will help them with other programming problems, as well.