Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning on Kubernetes

You're reading from   Machine Learning on Kubernetes A practical handbook for building and using a complete open source machine learning platform on Kubernetes

Arrow left icon
Product type Paperback
Published in Jun 2022
Publisher Packt
ISBN-13 9781803241807
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ross Brigoli Ross Brigoli
Author Profile Icon Ross Brigoli
Ross Brigoli
Faisal Masood Faisal Masood
Author Profile Icon Faisal Masood
Faisal Masood
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: The Challenges of Adopting ML and Understanding MLOps (What and Why)
2. Chapter 1: Challenges in Machine Learning FREE CHAPTER 3. Chapter 2: Understanding MLOps 4. Chapter 3: Exploring Kubernetes 5. Part 2: The Building Blocks of an MLOps Platform and How to Build One on Kubernetes
6. Chapter 4: The Anatomy of a Machine Learning Platform 7. Chapter 5: Data Engineering 8. Chapter 6: Machine Learning Engineering 9. Chapter 7: Model Deployment and Automation 10. Part 3: How to Use the MLOps Platform and Build a Full End-to-End Project Using the New Platform
11. Chapter 8: Building a Complete ML Project Using the Platform 12. Chapter 9: Building Your Data Pipeline 13. Chapter 10: Building, Deploying, and Monitoring Your Model 14. Chapter 11: Machine Learning on Kubernetes 15. Other Books You May Enjoy

Preface

Machine Learning (ML) is the new black. Organizations are investing in adopting and uplifting their ML capabilities to build new products and improve customer experience. The focus of this book is on assisting organizations and teams to get business value out of ML initiatives. By implementing MLOps with Kubernetes, data scientists, IT operations professionals, and data engineers will be able to collaborate and build ML solutions that create tangible outcomes for their business. This book enables teams to take a practical approach to work together to bring the software engineering discipline to the ML project life cycle.

You'll begin by understanding why MLOps is important and discover the different components of an ML project. Later in the book, you'll design and build a practical end-to-end MLOps project that'll use the most popular OSS components. As you progress, you'll get to grips with the basics of MLOps and the value it can bring to your ML projects, as well as gaining experience in building, configuring, and using an open source, containerized ML platform on Kubernetes. Finally, you'll learn how to prepare data, build and deploy models quickly, and automate tasks for an efficient ML pipeline using a common platform. The exercises in this book will help you get hands-on with using Kubernetes and integrating it with OSS, such as JupyterHub, MLflow, and Airflow.

By the end of this book, you'll have learned how to effectively build, train, and deploy an ML model using the ML platform you built.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime