Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization FREE CHAPTER 2. Applying Machine Learning to Structured Data 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

A deeper network

We established earlier in this chapter that in order to approximate more complex functions, we need bigger and deeper networks. Creating a deeper network works by stacking layers on top of each other.

In this section, we will build a two-layer neural network like the one seen in the following diagram:

A deeper network

Sketch of a two-layer neural network

The input gets multiplied with the first set of weights, W1, producing an intermediate product, z1. This is then run through an activation function, which will produce the first layer's activations, A1.

These activations then get multiplied with the second layer of weights, W2, producing an intermediate product, z2. This gets run through a second activation function, which produces the output, A2, of our neural network:

z1 = X.dot(W1) + b1

a1 = np.tanh(z1)

z2 = a1.dot(W2) + b2

a2 = sigmoid(z2)

Note

Note: The full code for this example can be found in the GitHub repository belonging to this book.

As you can see, the first activation function is not a sigmoid function but is actually a tanh function. Tanh is a popular activation function for hidden layers and works a lot like sigmoid, except that it squishes values in the range between -1 and 1 rather than 0 and 1:

A deeper network

The tanh function

Backpropagation through our deeper network works by the chain rule, too. We go back through the network and multiply the derivatives:

A deeper network

Forward and backward pass through a two-layer neural network

The preceding equations can be expressed as the following Python code:

# Calculate loss derivative with respect to the output
dz2 = bce_derivative(y=y,y_hat=a2)

# Calculate loss derivative with respect to second layer weights
dW2 = (a1.T).dot(dz2)

# Calculate loss derivative with respect to second layer bias
db2 = np.sum(dz2, axis=0, keepdims=True)

# Calculate loss derivative with respect to first layer
dz1 = dz2.dot(W2.T) * tanh_derivative(a1)

# Calculate loss derivative with respect to first layer weights
dW1 = np.dot(X.T, dz1)

# Calculate loss derivative with respect to first layer bias
db1 = np.sum(dz1, axis=0)

Note that while the size of the inputs and outputs are determined by your problem, you can freely choose the size of your hidden layer. The hidden layer is another hyperparameter you can tweak. The bigger the hidden layer size, the more complex the function you can approximate. However, the flip side of this is that the model might overfit. That is, it may develop a complex function that fits the noise but not the true relationship in the data.

Take a look at the following chart. What we see here is the two moons dataset that could be clearly separated, but right now there is a lot of noise, which makes the separation hard to see even for humans. You can find the full code for the two-layer neural network as well as for the generation of these samples in the Chapter 1 GitHub repo:

A deeper network

The two moons dataset

The following diagram shows a visualization of the decision boundary, that is, the line at which the model separates the two classes, using a hidden layer size of 1:

A deeper network

Decision boundary for hidden layer size 1

As you can see, the network does not capture the true relationship of the data. This is because it's too simplistic. In the following diagram, you will see the decision boundary for a network with a hidden layer size of 500:

A deeper network

Decision boundary for hidden layer size 500

This model clearly fits the noise, but not the moons. In this case, the right hidden layer size is about 3.

Finding the right size and the right number of hidden layers is a crucial part of designing effective learning models. Building models with NumPy is a bit clumsy and can be very easy to get wrong. Luckily, there is a much faster and easier tool for building neural networks, called Keras.

You have been reading a chapter from
Machine Learning for Finance
Published in: May 2019
Publisher: Packt
ISBN-13: 9781789136364
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image