Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning YARN

You're reading from   Learning YARN Moving beyond MapReduce - learn resource management and big data processing using YARN

Arrow left icon
Product type Paperback
Published in Aug 2015
Publisher
ISBN-13 9781784393960
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (14) Chapters Close

Preface 1. Starting with YARN Basics FREE CHAPTER 2. Setting up a Hadoop-YARN Cluster 3. Administering a Hadoop-YARN Cluster 4. Executing Applications Using YARN 5. Understanding YARN Life Cycle Management 6. Migrating from MRv1 to MRv2 7. Writing Your Own YARN Applications 8. Dive Deep into YARN Components 9. Exploring YARN REST Services 10. Scheduling YARN Applications 11. Enabling Security in YARN 12. Real-time Data Analytics Using YARN Index

Summary

Scheduling in YARN is a pluggable framework to allocate cluster resources in a multiuser environment. In this chapter, you learned about different queues that are defined in YARN. The concepts and parameters related FSQueue and CSQueue. You also learned about the fair and capacity schedulers that are available in YARN. You also covered an overview about the queue definitions, configurations and job submission for both the schedulers.

In the next chapter, you will learn about the security framework of YARN. You will learn how Kerberos provides an authentication mechanism to YARN and how you can use access control lists.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime