Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Intelligent Projects Using Python

You're reading from   Intelligent Projects Using Python 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788996921
Length 342 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Santanu Pattanayak Santanu Pattanayak
Author Profile Icon Santanu Pattanayak
Santanu Pattanayak
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Foundations of Artificial Intelligence Based Systems FREE CHAPTER 2. Transfer Learning 3. Neural Machine Translation 4. Style Transfer in Fashion Industry using GANs 5. Video Captioning Application 6. The Intelligent Recommender System 7. Mobile App for Movie Review Sentiment Analysis 8. Conversational AI Chatbots for Customer Service 9. Autonomous Self-Driving Car Through Reinforcement Learning 10. CAPTCHA from a Deep-Learning Perspective 11. Other Books You May Enjoy

Building the train and test dataset

We would like to evaluate how the model is doing once we have trained the model. We can validate the captions generated for a test dataset against the content of the videos in the test set. The train test set data sets can be created by using the following function. We can create the test dataset during training and use it for evaluation once the model has been trained:

   def train_test_split(self,data,test_frac=0.2):
indices = np.arange(len(data))
np.random.shuffle(indices)
train_indices_rec = int((1 - test_frac)*len(data))
indices_train = indices[:train_indices_rec]
indices_test = indices[train_indices_rec:]
data_train, data_test =
data.iloc[indices_train],data.iloc[indices_test]
data_train.reset_index(inplace=True)
data_test.reset_index(inplace=True)
return data_train...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image