Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IBM SPSS Modeler Essentials

You're reading from   IBM SPSS Modeler Essentials Effective techniques for building powerful data mining and predictive analytics solutions

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781788291118
Length 238 pages
Edition 1st Edition
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Keith McCormick Keith McCormick
Author Profile Icon Keith McCormick
Keith McCormick
Jesus Salcedo Jesus Salcedo
Author Profile Icon Jesus Salcedo
Jesus Salcedo
Arrow right icon
View More author details
Toc

Introduction to data mining


In this chapter, we will place IBM SPSS Modeler and its use in a broader context. Modeler was developed as a tool to perform data mining. Although the phrase predictive analytics is more common now, when Modeler was first developed in the 1990s, this type of analytics was almost universally called data mining. The use of the phrase data mining has evolved a bit since then to emphasize the exploratory aspect, especially in the context of big data and sometimes with a particular emphasis on the mining of private data that has been collected. This will not be our use of the term. Data mining can be defined in the following way:

Data mining is the search of data, accumulated during the normal course of doing business, in order to find and confirm the existence of previously unknown relationships that can produce positive and verifiable outcomes through the deployment of predictive models when applied to new data.

Several points are worth emphasizing:

  • The data is not new
  • The data that can solve the problem was not collected solely to perform data mining
  • The data miner is not testing known relationships (neither hypotheses nor hunches) against the data
  • The patterns must be verifiable
  • The resulting models must be capable of something useful
  • The resulting models must actually work when deployed on new data

In the late 1990s, a process was developed called the Cross Industry Standard Process for Data Mining (CRISP-DM). We will be drawing heavily from that tradition in this chapter, and CRISP-DM can be a powerful way to organize your work in Modeler. It is because of our use of this process in organizing this book's material that prompts us to use the term data mining. It is worth noting that the team that first developed Modeler, originally called Clementine, and the team that wrote CRISP-DM have some members in common.

You have been reading a chapter from
IBM SPSS Modeler Essentials
Published in: Dec 2017
Publisher: Packt
ISBN-13: 9781788291118
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image