Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning Algorithms with Python

You're reading from   Hands-On Deep Learning Algorithms with Python Master deep learning algorithms with extensive math by implementing them using TensorFlow

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781789344158
Length 512 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Deep Learning
2. Introduction to Deep Learning FREE CHAPTER 3. Getting to Know TensorFlow 4. Section 2: Fundamental Deep Learning Algorithms
5. Gradient Descent and Its Variants 6. Generating Song Lyrics Using RNN 7. Improvements to the RNN 8. Demystifying Convolutional Networks 9. Learning Text Representations 10. Section 3: Advanced Deep Learning Algorithms
11. Generating Images Using GANs 12. Learning More about GANs 13. Reconstructing Inputs Using Autoencoders 14. Exploring Few-Shot Learning Algorithms 15. Assessments 16. Other Books You May Enjoy

GANs with Wasserstein distance

Now we will see another very interesting version of a GAN, called Wasserstein GAN (WGAN). It uses the Wasserstein distance in the GAN's loss function. First, let's understand why we need a Wasserstein distance measure and what's wrong with our current loss function.

Before going ahead, first, let's briefly explore two popular divergence measures that are used for measuring the similarity between two probability distributions.

The Kullback-Leibler (KL) divergence is one of the most popularly used measures for determining how one probability distribution diverges from the other. Let's say we have two discrete probability distributions, and , then the KL divergence can be expressed as follows:

When the two distributions are continuous, then the KL divergence can be expressed in the integral form as shown:

The KL divergence...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image