Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Generative AI Foundations in Python

You're reading from   Generative AI Foundations in Python Discover key techniques and navigate modern challenges in LLMs

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835460825
Length 190 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Carlos Rodriguez Carlos Rodriguez
Author Profile Icon Carlos Rodriguez
Carlos Rodriguez
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Foundations of Generative AI and the Evolution of Large Language Models FREE CHAPTER
2. Chapter 1: Understanding Generative AI: An Introduction 3. Chapter 2: Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers 4. Chapter 3: Tracing the Foundations of Natural Language Processing and the Impact of the Transformer 5. Chapter 4: Applying Pretrained Generative Models: From Prototype to Production 6. Part 2: Practical Applications of Generative AI
7. Chapter 5: Fine-Tuning Generative Models for Specific Tasks 8. Chapter 6: Understanding Domain Adaptation for Large Language Models 9. Chapter 7: Mastering the Fundamentals of Prompt Engineering 10. Chapter 8: Addressing Ethical Considerations and Charting a Path Toward Trustworthy Generative AI 11. Index 12. Other Books You May Enjoy

Looking back at the evolution of generative AI

The field of generative AI has experienced an unprecedented acceleration, leading to a surge in the development and adoption of foundation models such as GPT. However, this momentum has been building for several decades, driven by continuous and significant advancements in ML and natural language generation research. These developments have brought us to the current generation of state-of-the-art models.

To fully appreciate the current state of generative AI, it is important to understand its evolution, beginning with traditional language processing techniques and moving through to more recent advancements.

Overview of traditional methods in NLP

Natural language processing (NLP) technology has enabled machines to understand, interpret, and generate human language. It emerged from traditional statistical techniques such as n-grams and hidden Markov models (HMMs), which converted linguistic structures into mathematical models that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime