Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics

You're reading from   Big Data Analytics Real time analytics using Apache Spark and Hadoop

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785884696
Length 326 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Venkat Ankam Venkat Ankam
Author Profile Icon Venkat Ankam
Venkat Ankam
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Big Data Analytics at a 10,000-Foot View FREE CHAPTER 2. Getting Started with Apache Hadoop and Apache Spark 3. Deep Dive into Apache Spark 4. Big Data Analytics with Spark SQL, DataFrames, and Datasets 5. Real-Time Analytics with Spark Streaming and Structured Streaming 6. Notebooks and Dataflows with Spark and Hadoop 7. Machine Learning with Spark and Hadoop 8. Building Recommendation Systems with Spark and Mahout 9. Graph Analytics with GraphX 10. Interactive Analytics with SparkR Index

Chapter 7. Machine Learning with Spark and Hadoop

We have discussed a typical life cycle of a data science project in Chapter 1, Big Data Analytics at a 10,000-Foot View. This chapter, however, is aimed at learning more about machine learning techniques used in data science with Spark and Hadoop.

Data science is all about extracting deep meaning from data and creating data products. This requires both tools and methods such as statistics, machine learning algorithms, and tools for data collection and data cleansing. Once the data is collected and cleansed, it is analyzed using exploratory analytics to find patterns and build models with the aim of extracting deep meaning or creating a data product.

So, let's understand how these patterns and models are created. This chapter is divided into the following subtopics:

  • Introducing machine learning
  • Machine learning on Spark and Hadoop
  • Machine learning algorithms
  • Examples of machine learning algorithms
  • Building machine learning pipelines...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image