Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python A practical guide to probabilistic modeling

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805127161
Length 394 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface
1. Chapter 1 Thinking Probabilistically FREE CHAPTER 2. Chapter 2 Programming Probabilistically 3. Chapter 3 Hierarchical Models 4. Chapter 4 Modeling with Lines 5. Chapter 5 Comparing Models 6. Chapter 6 Modeling with Bambi 7. Chapter 7 Mixture Models 8. Chapter 8 Gaussian Processes 9. Chapter 9 Bayesian Additive Regression Trees 10. Chapter 10 Inference Engines 11. Chapter 11 Where to Go Next 12. Bibliography
13. Other Books You May Enjoy
14. Index

4.3 Generalizing the linear model

The linear model we have been using is a special case of a more general model, the Generalized Linear Model (GLM). The GLM is a generalization of the linear model that allows us to use different distributions for the likelihood. At a high level, we can write a Bayesian GLM like:

𝛼 ∼ a prior 𝛽 ∼ another prior θ ∼ some prior μ = 𝛼 + 𝛽X Y ∼ ϕ (f (μ ),θ)

is an arbitrary distribution; some common cases are Normal, Student’s t, Gamma, and NegativeBinomial. θ represents any auxiliary parameter the distribution may have, like σ for the Normal. We also have f, usually called the inverse link function. When is Normal, then f is the identity function. For distributions like Gamma and NegativeBinomial, f is usually the exponential function. Why do we need f? Because the linear model will generally be on the real line, but the μ parameter (or its equivalent) may be defined on a different domain. For instance, μ for the NegativeBinomial is defined for positive values, so we need to transform μ....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime