Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python A practical guide to probabilistic modeling

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805127161
Length 394 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface
1. Chapter 1 Thinking Probabilistically FREE CHAPTER 2. Chapter 2 Programming Probabilistically 3. Chapter 3 Hierarchical Models 4. Chapter 4 Modeling with Lines 5. Chapter 5 Comparing Models 6. Chapter 6 Modeling with Bambi 7. Chapter 7 Mixture Models 8. Chapter 8 Gaussian Processes 9. Chapter 9 Bayesian Additive Regression Trees 10. Chapter 10 Inference Engines 11. Chapter 11 Where to Go Next 12. Bibliography
13. Other Books You May Enjoy
14. Index

4.10 Summary

In this chapter, we have learned about linear regression, which aims to model the relationship between a dependent variable and an independent variable. We have seen how to use PyMC to fit a linear regression model and how to interpret the results and make plots that we can share with different audiences.

Our first example was a model with a Gaussian response. But then we saw that this is just one assumption and we can easily change it to deal with non-Gaussian responses, such as count data, using a NegativeBinomial regression model or a logistic regression model for binary data. We saw that when doing so we also need to set an inverse link function to map the linear predictor to the response variable. Using a Student’s t-distribution as the likelihood can be useful for dealing with outliers. We spent most of the chapter modeling the mean as a linear function of the independent variable, but we learned that we can also model other parameters, like the variance. This...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime