Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence for Robotics

You're reading from   Artificial Intelligence for Robotics Build intelligent robots using ROS 2, Python, OpenCV, and AI/ML techniques for real-world tasks

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805129592
Length 344 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Francis X. Govers III Francis X. Govers III
Author Profile Icon Francis X. Govers III
Francis X. Govers III
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Building Blocks for Robotics and Artificial Intelligence
2. Chapter 1: The Foundation of Robotics and Artificial Intelligence FREE CHAPTER 3. Chapter 2: Setting Up Your Robot 4. Chapter 3: Conceptualizing the Practical Robot Design Process 5. Part 2: Adding Perception, Learning, and Interaction to Robotics
6. Chapter 4: Recognizing Objects Using Neural Networks and Supervised Learning 7. Chapter 5: Picking Up and Putting Away Toys using Reinforcement Learning and Genetic Algorithms 8. Chapter 6: Teaching a Robot to Listen 9. Part 3: Advanced Concepts – Navigation, Manipulation, Emotions, and More
10. Chapter 7: Teaching the Robot to Navigate and Avoid Stairs 11. Chapter 8: Putting Things Away 12. Chapter 9: Giving the Robot an Artificial Personality 13. Chapter 10: Conclusions and Reflections 14. Answers 15. Index 16. Other Books You May Enjoy Appendix

Introducing GAs

Moving the robot arm requires the coordination of three motors simultaneously to create a smooth movement. We need a mechanism to create different combinations of motor movement for the robot to test. We could just use random numbers, but that would be inefficient and could take thousands of trials to get to the level of training we want.

What if we had a way of trying different combinations of motor movement, and then pitting them against one another to pick the best one? It would be a sort of Darwinian survival of the fittest for arm movement scripts – such as a GA process. Let’s explore how we can apply this concept to our use case.

Understanding how the GA process works

Here are the steps involved in our GA process:

  1. We do a trial run to go from position 1 (neutral carry) to position 2 (pickup). The robot moves the arm 100 times before getting the hand into the right position. Why 100? We need a large enough sample space to allow the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime