Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Time Series Analysis with Python Cookbook

You're reading from   Time Series Analysis with Python Cookbook Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation

Arrow left icon
Product type Paperback
Published in Apr 2025
Publisher
ISBN-13 9781805124283
Length 98 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tarek A. Atwan Tarek A. Atwan
Author Profile Icon Tarek A. Atwan
Tarek A. Atwan
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

1. Time Series Analysis with Python Cookbook, Second Edition: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation FREE CHAPTER
2. Getting Started with Time Series Analysis 3. Reading Time Series Data from Files 4. Reading Time Series Data from Databases 5. Persisting Time Series Data to Files 6. Persisting Time Series Data to Databases 7. Working with Date and Time in Python 8. Handling Missing Data 9. Outlier Detection Using Statistical Methods 10. Exploratory Data Analysis and Diagnosis 11. Building Univariate Time Series Models Using Statistical Methods 12. Additional Statistical Modeling Techniques for Time Series 13. Outlier Detection Using Unsupervised Machine Learning

Join our book community on Discord

https://packt.link/zmkOY

In this chapter, you will use the pandas library to persist your time series DataFrames to different file formats, such as CSV, Excel, Parquet, and pickle files. When performing analysis or data transformations on DataFrames, you essentially leverage pandas' in-memory analytics capabilities, offering great performance. However, being in memory means the data can easily be lost since it has not yet persisted in disk storage.

When working with DataFrames, you will need to persist your data for future retrieval, creating backups, or sharing your data with others. The pandas library is bundled with a rich set of writer functions to persist your in-memory DataFrame (or series) to disk in various file formats. These writer functions allow you to store data on a local drive or a remote server location, such as a cloud storage filesystem, including Google Drive, AWS S3, Azure Blob Storage, and Dropbox.

In this chapter, you will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime