Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Supervised Machine Learning with Python

You're reading from   Supervised Machine Learning with Python Develop rich Python coding practices while exploring supervised machine learning

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781838825669
Length 162 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Taylor Smith Taylor Smith
Author Profile Icon Taylor Smith
Taylor Smith
Arrow right icon
View More author details
Toc

Implementing logistic regression from scratch

In this section, we will walk through the implementation of logistic regression in Python within the packtml package. We will start off with a brief recap of what logistic regression seeks to accomplish and then go over the source code and look at an example.

Recall that logistic regression seeks to classify a sample into a discrete category, also known as classification. The logistic transformation allows us to transform the log odds that we get from the inner product of our parameters and X.

Notice that we have three Python files open. One is extmath.py, from within the utils directory inside of packtml; another is simple_logistic.py, from within the regression library in packtml; and the final one is an example_logistic_regression.py file, inside the examples directory and regression.

We will dive right into the code base...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime