Given certain variables, we usually want to find clusters of observations. These clusters should be as different as possible, and should contain "similar" observations inside. Suppose we had the following pairs of values [height=170,weight=50], [height=180,weight=70],[height=190,weight=90] and [height=200,weight=100] and we wanted to cluster them. A reasonable 2-cluster configuration would have the following centroids: [height=175,weight=60],[height=195,weight=95]. Obviously, the first two observations would fall under the first cluster, and the other two should fall under the second cluster. The simplest and most preferred algorithm for clustering is k-means. It works by picking k centroids at random and assigning each observation to the nearest centroid. The mean/center for each centroid is updated, and the procedure is repeated for the other variables...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand