Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Natural Language Processing Cookbook

You're reading from   Python Natural Language Processing Cookbook Over 60 recipes for building powerful NLP solutions using Python and LLM libraries

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781803245744
Length 312 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Saurabh Chakravarty Saurabh Chakravarty
Author Profile Icon Saurabh Chakravarty
Saurabh Chakravarty
Zhenya Antić Zhenya Antić
Author Profile Icon Zhenya Antić
Zhenya Antić
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Learning NLP Basics 2. Chapter 2: Playing with Grammar FREE CHAPTER 3. Chapter 3: Representing Text – Capturing Semantics 4. Chapter 4: Classifying Texts 5. Chapter 5: Getting Started with Information Extraction 6. Chapter 6: Topic Modeling 7. Chapter 7: Visualizing Text Data 8. Chapter 8: Transformers and Their Applications 9. Chapter 9: Natural Language Understanding 10. Chapter 10: Generative AI and Large Language Models 11. Index 12. Other Books You May Enjoy

Topic Modeling

In this chapter, we will cover topic modeling, or the classification of topics present in a corpus of text. Topic modeling is a very useful technique that can give us an idea about which topics appear in a document set. For example, topic modeling is used for trend discovery on social media. Also, in many cases, it is useful to do topic modeling as part of the preliminary data analysis of a dataset to understand which topics appear in it.

There are many different algorithms available to do this. All of them try to find similarities between different texts and put them into several clusters. These different clusters indicate different topics.

You will learn how to create and use topic models via various techniques with the BBC news dataset in this chapter. This dataset has news that falls within the following topics: politics, sport, business, tech, and entertainment. Thus, we know that in each case, we need to have five topic clusters. This is not going to be the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image