Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Geospatial Development

You're reading from   Python Geospatial Development Develop sophisticated mapping applications from scratch using Python 3 tools for geospatial development

Arrow left icon
Product type Paperback
Published in May 2016
Publisher
ISBN-13 9781785288937
Length 446 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Erik Westra Erik Westra
Author Profile Icon Erik Westra
Erik Westra
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Geospatial Development Using Python FREE CHAPTER 2. GIS 3. Python Libraries for Geospatial Development 4. Sources of Geospatial Data 5. Working with Geospatial Data in Python 6. Spatial Databases 7. Using Python and Mapnik to Generate Maps 8. Working with Spatial Data 9. Improving the DISTAL Application 10. Tools for Web-based Geospatial Development 11. Putting It All Together – a Complete Mapping System 12. ShapeEditor – Importing and Exporting Shapefiles 13. ShapeEditor – Selecting and Editing Features Index

Converting and standardizing units of geometry and distance


Imagine that you have two points on the earth's surface, with a straight line drawn between them:

Each of these points can be described as a coordinate using some arbitrary coordinate system (for example, using latitude and longitude values), while the length of the straight line could be considered to be the distance between the two points.

Note

Of course, because the earth's surface is not flat, we aren't really dealing with straight lines at all. Rather, we are calculating geodetic or great-circle distances across the surface of the earth.

Given any two coordinates, it is possible to calculate the distance between them. Conversely, you can start with one coordinate, a desired distance and direction, and then calculate the coordinates for the other point.

The pyproj Python library allows you to perform these types of calculations for any given datum. You can also use pyproj to convert from projected coordinates back to geographic coordinates...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image