Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python for Finance Cookbook

You're reading from   Python for Finance Cookbook Over 50 recipes for applying modern Python libraries to financial data analysis

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781789618518
Length 432 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Financial Data and Preprocessing 2. Technical Analysis in Python FREE CHAPTER 3. Time Series Modeling 4. Multi-Factor Models 5. Modeling Volatility with GARCH Class Models 6. Monte Carlo Simulations in Finance 7. Asset Allocation in Python 8. Identifying Credit Default with Machine Learning 9. Advanced Machine Learning Models in Finance 10. Deep Learning in Finance 11. Other Books You May Enjoy

Dealing with missing values

In most real-life cases, we do not work with clean, complete data. One of the potential problems we are bound to encounter is that of missing values. We can categorize missing values by the reason they occur:

  • Missing completely at random (MCAR)—The reason for the missing data is unrelated to the rest of the data. An example could be a respondent accidentally missing a question in a survey.
  • Missing at random (MAR)—The missingness of the data can be inferred from data in another column(-s). For example, the missingness to a response to a certain survey question can be to some extent determined conditionally by other factors such as gender, age, lifestyle, and so on.
  • Missing not at random (MNAR)—When there is some underlying reason for the missing values. For example, people with very high incomes tend to be hesitant about revealing...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime