As we discussed in the Value function approximation section, we are training the network online, as the agent receives stream of experiences from the environment. But the environment is usually sequential, and consecutive experiences might not differ much. For example, imagine that the agent is a car, which is currently sliding downhill. While doing so, it receives consistent feedback that the speed increases. If we feed the network with such unified training data, there is a chance that it will start dominating all other experiences. The network might "forget" previous situations and the performance would decrease (this is a disadvantage of some neural networks). We can solve this issue with experience replay. As the environment interaction goes, we'll store a sliding window of the latest n interactions: (state st-1, action at-1, reward rt, state...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine