Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789348460
Length 386 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning - an Introduction 2. Neural Networks FREE CHAPTER 3. Deep Learning Fundamentals 4. Computer Vision with Convolutional Networks 5. Advanced Computer Vision 6. Generating Images with GANs and VAEs 7. Recurrent Neural Networks and Language Models 8. Reinforcement Learning Theory 9. Deep Reinforcement Learning for Games 10. Deep Learning in Autonomous Vehicles 11. Other Books You May Enjoy

Deep Q-learning

We ended Chapter 8, Reinforcement Learning Theory, with an example of an agent learning to play the cart-pole game with the help of Q-learning and a simple network with one hidden layer. The state of the cart-pole environment is described with four numerical variables: cart position and velocity, and pole angle and velocity. We used these variables as an input to the q-function approximation network and successfully trained the agent to prevent the pole from tipping over for more than 200 episode steps. But if it was a human playing the game, he or she would steer the cart based on the screen images he or she sees. That is, if we think of the human as an "agent," the environment "state" he or she would use would be the sequence of frames displayed on the screen. Compare this to just four variables our artificial agent used, and you'll see...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image