Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

Storing data in Redis


Remote Dictionary Server (Redis) is an in-memory, key-value database, written in C. In the in-memory mode, Redis is extremely fast, with writing and reading being almost equally fast. Redis follows the publish/subscribe model and uses Lua scripts as stored procedures. Publish/subscribe makes use of channels to which a client can subscribe in order to receive messages. I had installed Redis version 3.2.6 at the time of writing the book. Redis can be downloaded from the Redis home page at http://redis.io/. After installing the Redis distribution, issue the following command to run the server:

$ src/redis-server

Now let's install a Python driver:

$ pip3 install redis

It's pretty easy to use Redis when you realize it's a giant dictionary. However, Redis does have its limitations. Sometimes, it's just convenient to store a complex object as a JSON string (or other format). That's what we are going to do with a Pandas DataFrame. Connect to Redis as follows:

r = redis.StrictRedis...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime