Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Privacy-Preserving Machine Learning

You're reading from   Privacy-Preserving Machine Learning A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781800564671
Length 402 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Srinivasa Rao Aravilli Srinivasa Rao Aravilli
Author Profile Icon Srinivasa Rao Aravilli
Srinivasa Rao Aravilli
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction to Data Privacy and Machine Learning FREE CHAPTER
2. Chapter 1: Introduction to Data Privacy, Privacy Breaches, and Threat Modeling 3. Chapter 2: Machine Learning Phases and Privacy Threats/Attacks in Each Phase 4. Part 2: Use Cases of Privacy-Preserving Machine Learning and a Deep Dive into Differential Privacy
5. Chapter 3: Overview of Privacy-Preserving Data Analysis and an Introduction to Differential Privacy 6. Chapter 4: Overview of Differential Privacy Algorithms and Applications of Differential Privacy 7. Chapter 5: Developing Applications with Differential Privacy Using Open Source Frameworks 8. Part 3: Hands-On Federated Learning
9. Chapter 6: Federated Learning and Implementing FL Using Open Source Frameworks 10. Chapter 7: Federated Learning Benchmarks, Start-Ups, and the Next Opportunity 11. Part 4: Homomorphic Encryption, SMC, Confidential Computing, and LLMs
12. Chapter 8: Homomorphic Encryption and Secure Multiparty Computation 13. Chapter 9: Confidential Computing – What, Why, and the Current State 14. Chapter 10: Preserving Privacy in Large Language Models 15. Index 16. Other Books You May Enjoy

What do privacy and data privacy mean?

Alan Westin’s theory describes privacy as the control over how information about a person is handled and communicated to others. Irwin Altman added that privacy includes limiting social interaction and included regulating personal space and territory.

Personal data includes any information that by itself or in conjunction with other elements can be used to identify an individual, such as their name, age, gender, personal identification number, race, religion, address, email address, biometric data, device IDs, medical data, and genetics data, based on the regulations defined in the country where the orginated from.

Privacy refers to an individual’s ability to keep their information, whether it is personal or non-personal data, to themselves and share data based on their consent. Privacy helps individuals maintain autonomy over their personal lives.

Data privacy focuses on the use and governance of personal data and policies...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image