Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Pretrain Vision and Large Language Models in Python

You're reading from   Pretrain Vision and Large Language Models in Python End-to-end techniques for building and deploying foundation models on AWS

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781804618257
Length 258 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Emily Webber Emily Webber
Author Profile Icon Emily Webber
Emily Webber
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Before Pretraining
2. Chapter 1: An Introduction to Pretraining Foundation Models FREE CHAPTER 3. Chapter 2: Dataset Preparation: Part One 4. Chapter 3: Model Preparation 5. Part 2: Configure Your Environment
6. Chapter 4: Containers and Accelerators on the Cloud 7. Chapter 5: Distribution Fundamentals 8. Chapter 6: Dataset Preparation: Part Two, the Data Loader 9. Part 3: Train Your Model
10. Chapter 7: Finding the Right Hyperparameters 11. Chapter 8: Large-Scale Training on SageMaker 12. Chapter 9: Advanced Training Concepts 13. Part 4: Evaluate Your Model
14. Chapter 10: Fine-Tuning and Evaluating 15. Chapter 11: Detecting, Mitigating, and Monitoring Bias 16. Chapter 12: How to Deploy Your Model 17. Part 5: Deploy Your Model
18. Chapter 13: Prompt Engineering 19. Chapter 14: MLOps for Vision and Language 20. Chapter 15: Future Trends in Pretraining Foundation Models 21. Index 22. Other Books You May Enjoy

Solving for your model size

Now that you’ve picked your best base model(s), you understand its pretraining regime, and you identified your dataset and its overall size in the last chapter, let’s start to understand the sizes of models you can target!

You may remember that in Chapter 1, we introduced a core concept called the scaling laws. Introduced by Kaplan et al. in 2020, this bold idea suggests a formal relationship between the overall sizes of your compute training cluster, your dataset, and your model. Prior to Kaplan, most machine learning practitioners had understood there to be a general relationship between these three, but his team took the bold task of proving this empirically via power laws.

The basic thing you need to understand can be demonstrated with a simple graphic. To train your model well, both in terms of producing the highest accuracy you can and in getting the most value out of your overall compute budget, it’s helpful to think about...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime