Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Microsoft Power BI Cookbook

You're reading from   Microsoft Power BI Cookbook Creating Business Intelligence Solutions of Analytical Data Models, Reports, and Dashboards

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788290142
Length 802 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Brett Powell Brett Powell
Author Profile Icon Brett Powell
Brett Powell
Author Test Author Test
Author Profile Icon Author Test
Author Test
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Configuring Power BI Development Tools FREE CHAPTER 2. Accessing and Retrieving Data 3. Building a Power BI Data Model 4. Authoring Power BI Reports 5. Creating Power BI Dashboards 6. Getting Serious with Date Intelligence 7. Parameterizing Power BI Solutions 8. Implementing Dynamic User-Based Visibility in Power BI 9. Applying Advanced Analytics and Custom Visuals 10. Developing Solutions for System Monitoring and Administration 11. Enhancing and Optimizing Existing Power BI Solutions 12. Deploying and Distributing Power BI Content 13. Integrating Power BI with Other Applications

Strengthening data import and integration processes

Many Power BI datasets must be created without the benefit of a data warehouse or even a relational database source system. These datasets, which often transform and merge less structured and governed data sources such as text and Excel files generally require more complex M queries to prepare the data for analysis. The combination of greater M query complexity and periodic structural changes and data quality issues in these sources can lead to refresh failures and challenges in supporting the dataset. Additionally, as M queries are sometimes initially created exclusively via the Query Editor interface, the actual M code generated may contain unexpected logic that can lead to incorrect results and unnecessary dependencies on source data.

This recipe includes three practical examples of increasing the reliability of data import...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image