Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Numerical Computing with NumPy

You're reading from   Mastering Numerical Computing with NumPy Master scientific computing and perform complex operations with ease

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788993357
Length 248 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Tiago Antao Tiago Antao
Author Profile Icon Tiago Antao
Tiago Antao
Mert Cuhadaroglu Mert Cuhadaroglu
Author Profile Icon Mert Cuhadaroglu
Mert Cuhadaroglu
Umit Mert Cakmak Umit Mert Cakmak
Author Profile Icon Umit Mert Cakmak
Umit Mert Cakmak
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Working with NumPy Arrays FREE CHAPTER 2. Linear Algebra with NumPy 3. Exploratory Data Analysis of Boston Housing Data with NumPy Statistics 4. Predicting Housing Prices Using Linear Regression 5. Clustering Clients of a Wholesale Distributor Using NumPy 6. NumPy, SciPy, Pandas, and Scikit-Learn 7. Advanced Numpy 8. Overview of High-Performance Numerical Computing Libraries 9. Performance Benchmarks 10. Other Books You May Enjoy

Working with multidimensional arrays

This section will give you a brief understanding of multidimensional arrays by going through different matrix operations.

In order to do matrix multiplication in NumPy, you have to use dot() instead of *. Let's see some examples:

In [66]: c = np.ones((4, 4))
c*c
Out[66]: array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]])
In [67]: c.dot(c)
Out[67]: array([[ 4., 4., 4., 4.],
[ 4., 4., 4., 4.],
[ 4., 4., 4., 4.],
[ 4., 4., 4., 4.]])

The most important topic in working with multidimensional arrays is stacking, in other words how to merge two arrays. hstack is used for stacking arrays horizontally (column-wise) and vstack is used for stacking arrays vertically (row-wise). You can also split the columns with the hsplit and vsplit methods in the same way that you stacked them:

In [68]: y = np.arange(15).reshape(3,5)
x = np.arange(10).reshape(2,5)
new_array = np.vstack((y,x))
new_array
Out[68]: array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9]])
In [69]: y = np.arange(15).reshape(5,3)
x = np.arange(10).reshape(5,2)
new_array = np.hstack((y,x))
new_array
Out[69]: array([[ 0, 1, 2, 0, 1],
[ 3, 4, 5, 2, 3],
[ 6, 7, 8, 4, 5],
[ 9, 10, 11, 6, 7],
[12, 13, 14, 8, 9]])

These methods are very useful in machine learning applications, especially when creating datasets. After you stack your arrays, you can check their descriptive statistics by using Scipy.stats. Imagine a case where you have 100 records, and each record has 10 features, which means you have a 2D matrix which has 100 rows and 10 columns. The following example shows how you can easily get some descriptive statistics for each feature:

In [70]: from scipy import stats
x= np.random.rand(100,10)
n, min_max, mean, var, skew, kurt = stats.describe(x)
new_array = np.vstack((mean,var,skew,kurt,min_max[0],min_max[1]))
new_array.T
Out[70]: array([[ 5.46011575e-01, 8.30007104e-02, -9.72899085e-02,
-1.17492785e+00, 4.07031246e-04, 9.85652100e-01],
[ 4.79292653e-01, 8.13883169e-02, 1.00411352e-01,
-1.15988275e+00, 1.27241020e-02, 9.85985488e-01],
[ 4.81319367e-01, 8.34107619e-02, 5.55926602e-02,
-1.20006450e+00, 7.49534810e-03, 9.86671083e-01],
[ 5.26977277e-01, 9.33829059e-02, -1.12640661e-01,
-1.19955646e+00, 5.74237697e-03, 9.94980830e-01],
[ 5.42622228e-01, 8.92615897e-02, -1.79102183e-01,
-1.13744108e+00, 2.27821933e-03, 9.93861532e-01],
[ 4.84397369e-01, 9.18274523e-02, 2.33663872e-01,
-1.36827574e+00, 1.18986562e-02, 9.96563489e-01],
[ 4.41436165e-01, 9.54357485e-02, 3.48194314e-01,
-1.15588500e+00, 1.77608372e-03, 9.93865324e-01],
[ 5.34834409e-01, 7.61735119e-02, -2.10467450e-01,
-1.01442389e+00, 2.44706226e-02, 9.97784091e-01],
[ 4.90262346e-01, 9.28757119e-02, 1.02682367e-01,
-1.28987137e+00, 2.97705706e-03, 9.98205307e-01],
[ 4.42767478e-01, 7.32159267e-02, 1.74375646e-01,
-9.58660574e-01, 5.52410464e-04, 9.95383732e-01]])

NumPy has a great module named numpy.ma, which is used for masking array elements. It's very useful when you want to mask (ignore) some elements while doing your calculations. When NumPy masks, it will be treated as an invalid and does not take into account computation:

In [71]: import numpy.ma as ma
x = np.arange(6)
print(x.mean())
masked_array = ma.masked_array(x, mask=[1,0,0,0,0,0])
masked_array.mean()
2.5
Out[71]: 3.0

In the preceding code, you have an array x = [0,1,2,3,4,5]. What you do is mask the first element of the array and then calculate the mean. When an element is masked as 1(True), the associated index value in the array will be masked. This method is also very useful while replacing the NAN values:

In [72]: x = np.arange(25, dtype = float).reshape(5,5)
x[x<5] = np.nan
x
Out[72]: array([[ nan, nan, nan, nan, nan],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
In [73]: np.where(np.isnan(x), ma.array(x, mask=np.isnan(x)).mean(axis=0), x)
Out[73]: array([[ 12.5, 13.5, 14.5, 15.5, 16.5],
[ 5. , 6. , 7. , 8. , 9. ],
[ 10. , 11. , 12. , 13. , 14. ],
[ 15. , 16. , 17. , 18. , 19. ],
[ 20. , 21. , 22. , 23. , 24. ]])

In preceding code, we changed the value of the first five elements to nan by putting a condition with index. x[x<5] refers to the elements which indexed for 0, 1, 2, 3, and 4. Then we overwrite these values with the mean of each column(excluding nan values). There are many other useful methods in array operations in order help your code be more concise:

Method
Description
np.concatenate
Join to the matrix in a sequence with a given matrix
np.repeat
Repeat the element of an array along a specific axis
np.delete
Return a new array with the deleted subarrays
np.insert
Insert values before the specified axis
np.unique
Find unique values in an array
np.tile
Create an array by repeating a given input for a given number of repetitions
You have been reading a chapter from
Mastering Numerical Computing with NumPy
Published in: Jun 2018
Publisher: Packt
ISBN-13: 9781788993357
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image