When you have a linear line, you take the derivative so the derivative shows the slope of this line. Gradient is a generalization of the derivative when you have a multiple variable in your function, therefore the result of gradient is actually a vector function rather than a scalar value in derivative. The main goal of ML is actually finding the best model that fits your data. You can evaluate the meaning of the best as minimizing your loss function or objective function. Gradient is used for finding the value of the coefficients or a function that will minimize your loss or cost function. A well-known way of finding optimum points is taking the derivative of the objective function then setting it to zero to find your model coefficients. If you have more than one coefficient then it becomes a gradient rather than a derivative, and it becomes a vector equation...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand