Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R, Second Edition

You're reading from   Mastering Machine Learning with R, Second Edition Advanced prediction, algorithms, and learning methods with R 3.x

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787287471
Length 420 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Process for Success FREE CHAPTER 2. Linear Regression - The Blocking and Tackling of Machine Learning 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques - K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks and Deep Learning 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis, Recommendation Engines, and Sequential Analysis 11. Creating Ensembles and Multiclass Classification 12. Time Series and Causality 13. Text Mining 14. R on the Cloud 15. R Fundamentals 16. Sources

Support vector machines


The first time I heard of support vector machines, I have to admit that I was scratching my head, thinking that this was some form of an academic obfuscation or inside joke. However, my open-minded review of SVM has replaced this natural skepticism with a healthy respect for the technique.

SVMs have been shown to perform well in a variety of settings and are often considered one of the best "out-of-the-box" classifiers (James, G., 2013). To get a practical grasp of the subject, let's look at another simple visual example. In the following figure, you will see that the classification task is linearly separable. However, the dotted line and solid line are just two among an infinite number of possible linear solutions. You would have separating hyperplanes in a problem that has more than two dimensions:

So many solutions can be problematic for generalization because whatever solution you choose, any new observation to the right of the line will be classified as benign...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime