Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering Machine Learning with R
Mastering Machine Learning with R

Mastering Machine Learning with R: Master machine learning techniques with R to deliver insights for complex projects

eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Mastering Machine Learning with R

Chapter 2. Linear Regression – The Blocking and Tackling of Machine Learning

 

"Some people try to find things in this game that don't exist, but football is only two things – blocking and tackling."

 
 --Vince Lombardi, Hall of Fame Football Coach

It is important that we get started with a simple, yet extremely effective, technique that has been used for a long time: linear regression. Albert Einstein is believed to have remarked at one time or another that things should be made as simple as possible, but no simpler. This is sage advice and a good rule of thumb in the development of algorithms for machine learning. Considering the other techniques that we will discuss later, there is no simpler model than the tried and tested linear regression, which uses the least squares approach to predict a quantitative outcome. In fact, one could consider it to be the foundation of all the methods that we will discuss later, many of which are mere...

Univariate linear regression

We begin by looking at a simple way to predict a quantitative response, Y, with one predictor variable, x, assuming that Y has a linear relationship with x. The model for this can be written as, Y = B0 + B1x + e. We can state it as the expected value of Y being a function of the parameters B0 (the intercept) plus B1 (the slope) times x, plus an error term. The least squares approach chooses the model parameters that minimize the Residual Sum of Squares (RSS) of the predicted y values versus the actual Y values. For a simple example, let's say we have the actual values of Y1 and Y2 equal to 10 and 20 respectively, along with the predictions of y1 and y2 as 12 and 18. To calculate RSS, we add the squared differences RSS = (Y1 – y1)2 + (Y2 – y2)2, which, with simple substitution, yields (10 – 12)2 + (20 – 18)2 = 8.

I once remarked to a peer during our Lean Six Sigma Black Belt training that it's all about the sum of squares...

Multivariate linear regression

You may be asking yourself the question if in the real world you would ever have just one predictor variable; that is, indeed, fair. Most likely, several, if not many, predictor variables or features, as they are affectionately termed in machine learning, will have to be included in your model. And with that, let's move on to multivariate linear regression and a new business case.

Business understanding

In keeping with the water conservation/prediction theme, let's look at another dataset in the alr3 package, appropriately named water. Lately, the severe drought in Southern California has caused much alarm. Even the Governor, Jerry Brown, has begun to take action with a call to citizens to reduce water usage by 20 percent. For this exercise, let's say we have been commissioned by the state of California to predict water availability. The data provided to us contains 43 years of snow precipitation, measured at six different sites in the Owens Valley...

Other linear model considerations

Before moving on, there are two additional linear model topics that we need to discuss. The first is the inclusion of a qualitative feature, and the second is an interaction term; both are explained in the following sections.

Qualitative feature

A qualitative feature, also referred to as a factor, can take on two or more levels such as Male/Female or Bad/Neutral/Good. If we have a feature with two levels, say gender, then we can create what is known as an indicator or dummy feature, arbitrarily assigning one level as 0 and the other as 1. If we create a model with just the indicator, our linear model would still follow the same formulation as before, that is, Y = B0 + B1x + e. If we code the feature as male is equal to zero and female is equal to one, then the expectation for male would just be the intercept, B0, while for female it would be B0 + B1x. In the situation where you have more than two levels of the feature, you can create n-1 indicators; so, for...

Summary

In the context of machine learning, we train a model and test it to predict or forecast an outcome. In this chapter, we have had an in-depth look at the simple yet extremely effective method of linear regression to predict a quantitative response. The later chapters will cover more advanced techniques, but many of them are mere extensions of what we have learned in this chapter. We've discussed the problem of not visually inspecting the dataset and simply relying on the statistics to guide you in model selection.

With just a few lines of code, you can make powerful and insightful predictions to support decision-making. Not only is it simple and effective, you can also include quantitative variables and interaction terms among the features. Indeed, it is a method that anyone delving into the world of machine learning must master.

Left arrow icon Right arrow icon

Description

Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data. The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series. The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages.

What you will learn

  • Gain deep insights to learn the applications of machine learning tools to the industry
  • Manipulate data in R efficiently to prepare it for analysis
  • Master the skill of recognizing techniques for effective visualization of data
  • Understand why and how to create test and training data sets for analysis
  • Familiarize yourself with fundamental learning methods such as linear and logistic regression
  • Comprehend advanced learning methods such as support vector machines
  • Realize why and how to apply unsupervised learning methods
Estimated delivery fee Deliver to Spain

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 28, 2015
Length: 400 pages
Edition : 1st
Language : English
ISBN-13 : 9781783984527
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Estimated delivery fee Deliver to Spain

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Oct 28, 2015
Length: 400 pages
Edition : 1st
Language : English
ISBN-13 : 9781783984527
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 113.97
Machine Learning with R
€41.99
Mastering Machine Learning with R
€41.99
Learning Bayesian Models with R
€29.99
Total 113.97 Stars icon

Table of Contents

14 Chapters
1. A Process for Success Chevron down icon Chevron up icon
2. Linear Regression – The Blocking and Tackling of Machine Learning Chevron down icon Chevron up icon
3. Logistic Regression and Discriminant Analysis Chevron down icon Chevron up icon
4. Advanced Feature Selection in Linear Models Chevron down icon Chevron up icon
5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines Chevron down icon Chevron up icon
6. Classification and Regression Trees Chevron down icon Chevron up icon
7. Neural Networks Chevron down icon Chevron up icon
8. Cluster Analysis Chevron down icon Chevron up icon
9. Principal Components Analysis Chevron down icon Chevron up icon
10. Market Basket Analysis and Recommendation Engines Chevron down icon Chevron up icon
11. Time Series and Causality Chevron down icon Chevron up icon
12. Text Mining Chevron down icon Chevron up icon
A. R Fundamentals Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(6 Ratings)
5 star 66.7%
4 star 16.7%
3 star 0%
2 star 16.7%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Fabien Deneuville Aug 04, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
J'ai apprécié ce livre. Il est globalement très bien, fait, donne de multiples exemples. Il s'adresse à qui connaît déjà bien R et a de solides bases en analytics. Il permettra d'aller plus loin sur le machine learning, les différents types d'algorithmes, les techniques existantes... J'ai appris des choses avec ce livre.
Amazon Verified review Amazon
HDFS_Python Jun 11, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Overall, I think the book was good and I enjoyed reading it, for a statistics book this is a praise. The following pros will seem lacking to the cons but believe me that it is because the book was overall good and any compliment hits nearly all chapters in the book. When I did see a con, I expanded on it to give full insight into the issue. As in any endeavor of this sort, it is always a challenge to find the right balance between theory and application.Pros:The book contains companion code. This means a student can save the code for the future, load it in when necessary, and alter the code to learn from it. In my honest opinion, this is the best option for me to study and learn a topic. Each chapter covers a different over-arching problem, which is gradually solved when new-techniques and strategies are introduced then implemented to solidify the knowledge with use. Allowing the reader to see what scenarios the technique surrounds and how it is run. The book covers a wide variety of topics, allowing a student to become a jack-of-all-trades, in the use of machine learning and advanced statistical techniques in R.Cons:I believe this book is suited well for someone with a mathematical and programming background. Without either, the book would seem challenging and daunting in some areas (i.e. Neural Networks). The book would not be impossible for someone without knowledge in R to read it, but it would be advised that the person knows passing knowledge of the software before they begin this book.Lack of mathematical theory. In a few areas, the book shows how to use the topic to reach the end but does not include the deep mathematical background into how the calculation are run. It has a chance of creating a black-box scenario where someone knows how it works on the outside without a clue of how it is run on the inside. In my opinion, this isn’t always necessary knowing how to calculate acf, pacf, and eacf by hand is nice but doesn’t help when running acf(model). Side note: no reasonable person would calculate acf past five lag or pacf by hand.Overview for all subjects. The way the book was made for ease in learning makes brings up a small problem. Some challenging data sets may exceed the scope of the books training material and could lead to the reader being ill prepared. An example of this problem would be if a time series problem contains innovative or additive outlier. This means the student may receive a model with the lowest AIC value, but the formula may not be the most optimized format. For this case, a student should know when a problem is showing intriguing characteristics and should being a research process into how to confront these problems, through other reading material, internet, or professional network.
Amazon Verified review Amazon
meitzmann Oct 20, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Mastering Machine Learning in R provides a great introduction to machine learning and data analysis techniques. It is refreshing to read a statistics/data focused book that is written in an accessible manner by someone with good communication skills.The concepts are laid out in a logical format that includes Data Preparation and Business Cases, two things that are often left out of many similar texts. The author goes into detail on concepts that need it and avoids it on concepts that don’t while still providing enough resources for the reader.The code that comes with the book makes it a great resource for students or someone who is looking to teach themselves. Overall I highly recommend this text.
Amazon Verified review Amazon
Mugdha Hota Oct 18, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Ok
Amazon Verified review Amazon
Nick P Jan 31, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Great introductory book on the subject and no need for me to fumble through other books.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela