Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering Machine Learning Algorithms
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms: Expert techniques to implement popular machine learning algorithms and fine-tune your models

eBook
€20.98 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Mastering Machine Learning Algorithms

Introduction to Semi-Supervised Learning

Semi-supervised learning is a machine learning branch that tries to solve problems with both labeled and unlabeled data with an approach that employs concepts belonging to clustering and classification methods. The high availability of unlabeled samples, in contrast with the difficulty of labeling huge datasets correctly, drove many researchers to investigate the best approaches that allow extending the knowledge provided by the labeled samples to a larger unlabeled population without loss of accuracy. In this chapter, we're going to introduce this branch and, in particular, we will discuss:

  • The semi-supervised scenario
  • The assumptions needed to efficiently operate in such a scenario
  • The different approaches to semi-supervised learning
  • Generative Gaussian mixtures algorithm
  • Contrastive pessimistic likelihood estimation approach
  • Semi...

Semi-supervised scenario

A typical semi-supervised scenario is not very different from a supervised one. Let's suppose we have a data generating process, pdata:

However, contrary to a supervised approach, we have only a limited number N of samples drawn from pdata and provided with a label, as follows:

Instead, we have a larger amount (M) of unlabeled samples drawn from the marginal distribution p(x):

In general, there are no restrictions on the values of N and M; however, a semi-supervised problem arises when the number of unlabeled samples is much higher than the number of complete samples. If we can draw N >> M labeled samples from pdata, it's probably useless to keep on working with semi-supervised approaches and preferring classical supervised methods is likely to be the best choice. The extra complexity we need is justified by M >> N, which is a...

Generative Gaussian mixtures

Generative Gaussian mixtures is an inductive algorithm for semi-supervised clustering. Let's suppose we have a labeled dataset (Xl, Yl) containing N samples (drawn from pdata) and an unlabeled dataset Xu containing M >> N samples (drawn from the marginal distribution p(x)). It's not necessary that M >> N, but we want to create a real semi-supervised scenario, with only a few labeled samples. Moreover, we are assuming that all unlabeled samples are consistent with pdata. This can seem like a vicious cycle, but without this assumption, the procedure does not have a strong mathematical foundation. Our goal is to determine a complete p(x|y) distribution using a generative model. In general, it's possible to use different priors, but we are now employing multivariate Gaussians to model our data:

Thus, our model parameters...

Contrastive pessimistic likelihood estimation

As explained at the beginning of this chapter, in many real life problems, it's cheaper to retrieve unlabeled samples, rather than correctly labeled ones. For this reason, many researchers worked to find out the best strategies to carry out a semi-supervised classification that could outperform the supervised counterpart. The idea is to train a classifier with a few labeled samples and then improve its accuracy after adding weighted unlabeled samples. One of the best results is the Contrastive Pessimistic Likelihood Estimation (CPLE) algorithm, proposed by M. Loog (in Loog M., Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification, arXiv:1503.00269).

Before explaining this algorithm, an introduction is necessary. If we have a labeled dataset (X, Y) containing N samples, it's possible to define...

Semi-supervised Support Vector Machines (S3VM)

When we discussed the cluster assumption, we also defined the low-density regions as boundaries and the corresponding problem as low-density separation. A common supervised classifier which is based on this concept is a Support Vector Machine (SVM), the objective of which is to maximize the distance between the dense regions where the samples must be. For a complete description of linear and kernel-based SVMs, please refer to Bonaccorso G., Machine Learning Algorithms, Packt Publishing; however, it's useful to remind yourself of the basic model for a linear SVM with slack variables ξi:

This model is based on the assumptions that yi can be either -1 or 1. The slack variables ξi or soft-margins are variables, one for each sample, introduced to reduce the strength imposed by the original condition...

Transductive Support Vector Machines (TSVM)

Another approach to the same problem is offered by the TSVM, proposed by T. Joachims (in Transductive Inference for Text Classification using Support Vector Machines, Joachims T., ICML Vol. 99/1999). The idea is to keep the original objective with two sets of slack variables: the first for the labeled samples and the other for the unlabeled ones:

As this is a transductive approach, we need to consider the unlabeled samples as variable-labeled ones (subject to the learning process), imposing a constraint similar to the supervised points. As for the previous algorithm, we assume we have N labeled samples and M unlabeled ones; therefore, the conditions become as follows:

The first constraint is the classical SVM one and it works only on labeled samples. The second one uses the variable y(u)j with the corresponding slack variables...

Summary

In this chapter, we introduced semi-supervised learning, starting from the scenario and the assumptions needed to justify the approaches. We discussed the importance of the smoothness assumption when working with both supervised and semi-supervised classifiers in order to guarantee a reasonable generalization ability. Then we introduced the clustering assumption, which is strictly related to the geometry of the datasets and allows coping with density estimation problems with a strong structural condition. Finally, we discussed the manifold assumption and its importance in order to avoid the curse of dimensionality.

The chapter continued by introducing a generative and inductive model: Generative Gaussian mixtures, which allow clustering labeled and unlabeled samples starting from the assumption that the prior probabilities are modeled by multivariate Gaussian distributions...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Discover high-performing machine learning algorithms and understand how they work in depth
  • One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation
  • Master concepts related to algorithm tuning, parameter optimization, and more

Description

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.

Who is this book for?

This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

What you will learn

  • Explore how a ML model can be trained, optimized, and evaluated
  • Understand how to create and learn static and dynamic probabilistic models
  • Successfully cluster high-dimensional data and evaluate model accuracy
  • Discover how artificial neural networks work and how to train, optimize, and validate them
  • Work with Autoencoders and Generative Adversarial Networks
  • Apply label spreading and propagation to large datasets
  • Explore the most important Reinforcement Learning techniques

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 25, 2018
Length: 576 pages
Edition : 1st
Language : English
ISBN-13 : 9781788625906
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want

Product Details

Publication date : May 25, 2018
Length: 576 pages
Edition : 1st
Language : English
ISBN-13 : 9781788625906
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 115.97
Mastering Machine Learning Algorithms
€36.99
Machine Learning Algorithms
€41.99
Deep Reinforcement Learning Hands-On
€36.99
Total 115.97 Stars icon

Table of Contents

16 Chapters
Machine Learning Model Fundamentals Chevron down icon Chevron up icon
Introduction to Semi-Supervised Learning Chevron down icon Chevron up icon
Graph-Based Semi-Supervised Learning Chevron down icon Chevron up icon
Bayesian Networks and Hidden Markov Models Chevron down icon Chevron up icon
EM Algorithm and Applications Chevron down icon Chevron up icon
Hebbian Learning and Self-Organizing Maps Chevron down icon Chevron up icon
Clustering Algorithms Chevron down icon Chevron up icon
Ensemble Learning Chevron down icon Chevron up icon
Neural Networks for Machine Learning Chevron down icon Chevron up icon
Advanced Neural Models Chevron down icon Chevron up icon
Autoencoders Chevron down icon Chevron up icon
Generative Adversarial Networks Chevron down icon Chevron up icon
Deep Belief Networks Chevron down icon Chevron up icon
Introduction to Reinforcement Learning Chevron down icon Chevron up icon
Advanced Policy Estimation Algorithms Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.4
(5 Ratings)
5 star 40%
4 star 20%
3 star 0%
2 star 20%
1 star 20%
Colbert Philippe Jul 16, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Excellent academic book for the Machine Learning practitioner! It's exactly what I was looking for. It focuses of reiterative algorithms for learning
Amazon Verified review Amazon
Gasher Jul 02, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great book to learn concepts around Machine Learning and application. Highly suggest for anyone interested in using ML in their work.
Amazon Verified review Amazon
Stefan Hildebrandt Jul 16, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
When ordering the book I wasn't sure what to expect, as multiple colleagues here in Germany told me that the topic is a bit hard to understand, but I have to say it was the direct opposite, moreover this book definitely brought my fundamental understandings on a new level. I like that the author is going into details and is moving more towards math-problems rather than existing algorithms. After reading the book I felt more secure about any tweaks I had to do and generally more thoughtful about the deeper level.Still, only 4 stars as the writing style is a bit to harsh. I think more explanation and some steps would be helpful.But, definitely a recommendation from my side!
Amazon Verified review Amazon
Johannes Feb 13, 2019
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
Unfortunately, the printing quality is rather bad. Formulas are blurry and hard to read; it seems something went wrong with certain environments (maybe a problem with LaTex typesetting, who knows). It makes the whole experience of reading the book quite dreadful.
Amazon Verified review Amazon
Kindle user Sep 10, 2018
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I was hoping to be able to use this as a textbook, but the explanations are incomplete and there are no citations.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.