Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Apache Spark Quick Start Guide

You're reading from   Machine Learning with Apache Spark Quick Start Guide Uncover patterns, derive actionable insights, and learn from big data using MLlib

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789346565
Length 240 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Jillur Quddus Jillur Quddus
Author Profile Icon Jillur Quddus
Jillur Quddus
Arrow right icon
View More author details
Toc

Logistic regression

We have seen how linear regression models allows us to predict a numerical outcome. Logistic regression models, however, allow us to predict a categorical outcome by predicting the probability that an outcome is true.

As with linear regression, in logistic regression models, we also have a dependent variable y and a set of independent variables x1, x2, …, xk. In logistic regression however, we want to learn a function that provides the probability that y = 1 (in other words, that the outcome variable is true) given this set of independent variables, as follows:

This function is called the Logistic Response function, and provides a number between 0 and 1, representing the probability that the outcome-dependent variable is true, as illustrated in Figure 4.3:

Figure 4.3: Logistic response function

Positive coefficient values βk increase the probability...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime