Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Security Principles

You're reading from   Machine Learning Security Principles Keep data, networks, users, and applications safe from prying eyes

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804618851
Length 450 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
John Paul Mueller John Paul Mueller
Author Profile Icon John Paul Mueller
John Paul Mueller
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – Securing a Machine Learning System
2. Chapter 1: Defining Machine Learning Security FREE CHAPTER 3. Chapter 2: Mitigating Risk at Training by Validating and Maintaining Datasets 4. Chapter 3: Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks 5. Part 2 – Creating a Secure System Using ML
6. Chapter 4: Considering the Threat Environment 7. Chapter 5: Keeping Your Network Clean 8. Chapter 6: Detecting and Analyzing Anomalies 9. Chapter 7: Dealing with Malware 10. Chapter 8: Locating Potential Fraud 11. Chapter 9: Defending against Hackers 12. Part 3 – Protecting against ML-Driven Attacks
13. Chapter 10: Considering the Ramifications of Deepfakes 14. Chapter 11: Leveraging Machine Learning for Hacking 15. Part 4 – Performing ML Tasks in an Ethical Manner
16. Chapter 12: Embracing and Incorporating Ethical Behavior 17. Index 18. Other Books You May Enjoy

Defining an environment

An environment is the sum of the interaction an object has with the world—whether it’s an application running on a network, with the network or the internet as its environment, a robot running an assembly line, with the building housing the assembly line as its environment, or a human working in an office with the real world as an environment is immaterial. An environment defines the surroundings in which an entity operates and therefore interacts with other entities. Each environment is unique but contains common elements that make it possible to secure the environment. An ML environment includes the following elements, which are used as the basis for discussion as the chapter progresses:

  • Data of any type and from any source
  • An application model
  • Ancillary code, such as libraries
  • Interfaces to third-party code such as services
  • An Application Programming Interface (API)
  • Third-party applications that interact directly...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image