Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization FREE CHAPTER 2. Applying Machine Learning to Structured Data 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Establishing a training and testing regime


Even with lots of data available, we have to ask ourselves; How do we want to split data between training, validation, and testing. This dataset already comes with a test set of future data, therefore we don't have to worry about the test set, but for the validation set, there are two ways of splitting: a walk-forward split, and a side-by-side split:

Possible testing regimes

In a walk-forward split, we train on all 145,000 series. To validate, we are going to use more recent data from all the series. In a side-by-side split, we sample a number of series for training and use the rest for validation.

Both have advantages and disadvantages. The disadvantage of walk-forward splitting is that we cannot use all of the observations of the series for our predictions. The disadvantage of side-by-side splitting is that we cannot use all series for training.

If we have few series, but multiple data observations per series, a walk-forward split is preferable. However...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime