Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization FREE CHAPTER 2. Applying Machine Learning to Structured Data 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Conv1D


You might remember Convolution Neural Networks (ConvNets, or CNNs) from Chapter 3, Utilizing Computer Vision, where we looked briefly at roofs and insurance. In computer vision, convolutional filters slide over the image two-dimensionally. There is also a version of convolutional filters that can slide over a sequence one-dimensionally. The output is another sequence, much like the output of a two-dimensional convolution was another image. Everything else about one-dimensional convolutions is exactly the same as two-dimensional convolutions.

In this section, we're going to start by building a ConvNet that expects a fixed input length:

n_features = 29
max_len = 100

model = Sequential()

model.add(Conv1D(16,5, input_shape=(100,29)))
model.add(Activation('relu'))
model.add(MaxPool1D(5))

model.add(Conv1D(16,5))
model.add(Activation('relu'))
model.add(MaxPool1D(5))
model.add(Flatten())
model.add(Dense(1))

Notice that next to Conv1D and Activation, there are two more layers in this network...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime