Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Data Mining

You're reading from   Machine Learning for Data Mining Improve your data mining capabilities with advanced predictive modeling

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838828974
Length 252 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Jesus Salcedo Jesus Salcedo
Author Profile Icon Jesus Salcedo
Jesus Salcedo
Arrow right icon
View More author details
Toc

Support Vector Machines

Support Vector Machines (SVMs) models were built to predict categorical and continuous outcomes and are especially good when you have many predictors. They were developed for difficult predicting situations where linear models were unable to separate the categories of the outcome field. They too work like black boxes, hiding their complex work in predicting results. Let's get an insight into how SVMs work.

Working with Support Vector Machines

Suppose, for example, there is a kind of data that cannot be separated using a single line as shown in this diagram:

Consider these shapes to be different types of data. As you can see, we won't be able to separate a cluster of data by just drawing a...

You have been reading a chapter from
Machine Learning for Data Mining
Published in: Apr 2019
Publisher: Packt
ISBN-13: 9781838828974
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image