Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning for Algorithmic Trading

You're reading from   Hands-On Machine Learning for Algorithmic Trading Design and implement investment strategies based on smart algorithms that learn from data using Python

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789346411
Length 684 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Jeffrey Yau Jeffrey Yau
Author Profile Icon Jeffrey Yau
Jeffrey Yau
Stefan Jansen Stefan Jansen
Author Profile Icon Stefan Jansen
Stefan Jansen
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Machine Learning for Trading 2. Market and Fundamental Data FREE CHAPTER 3. Alternative Data for Finance 4. Alpha Factor Research 5. Strategy Evaluation 6. The Machine Learning Process 7. Linear Models 8. Time Series Models 9. Bayesian Machine Learning 10. Decision Trees and Random Forests 11. Gradient Boosting Machines 12. Unsupervised Learning 13. Working with Text Data 14. Topic Modeling 15. Word Embeddings 16. Deep Learning 17. Convolutional Neural Networks 18. Recurrent Neural Networks 19. Autoencoders and Generative Adversarial Nets 20. Reinforcement Learning 21. Next Steps 22. Other Books You May Enjoy

Machine Learning for Trading

Algorithmic trading relies on computer programs that execute algorithms to automate some, or all, elements of a trading strategy. Algorithms are a sequence of steps or rules to achieve a goal and can take many forms. In the case of machine learning (ML), algorithms pursue the objective of learning other algorithms, namely rules, to achieve a target based on data, such as minimizing a prediction error.

These algorithms encode various activities of a portfolio manager who observes market transactions and analyzes relevant data to decide on placing buy or sell orders. The sequence of orders defines the portfolio holdings that, over time, aim to produce returns that are attractive to the providers of capital, taking into account their appetite for risk.

Ultimately, the goal of active investment management consists in achieving alpha, that is, returns in excess of the benchmark used for evaluation. The fundamental law of active management applies the information ratio (IR) to express the value of active management as the ratio of portfolio returns above the returns of a benchmark, usually an index, to the volatility of those returns. It approximates the information ratio as the product of the information coefficient (IC), which measures the quality of forecast as their correlation with outcomes, and the breadth of a strategy expressed as the square root of the number of bets.

Hence, the key to generating alpha is forecasting. Successful predictions, in turn, require superior information or a superior ability to process public information. Algorithms facilitate optimization throughout the investment process, from asset allocation to idea-generation, trade execution, and risk management. The use of ML for algorithmic trading, in particular, aims for more efficient use of conventional and alternative data, with the goal of producing both better and more actionable forecasts, hence improving the value of active management.

Historically, algorithmic trading used to be more narrowly defined as the automation of trade execution to minimize costs as offered by the sell side, but we will take a more comprehensive perspective since the use of algorithms, and ML, in particular, has come to impact a broader range of activities from idea generation and alpha factor design to asset allocation, position sizing, and the testing and evaluation of strategies.

This chapter looks at the bigger picture of how the use of ML has emerged as a critical source of competitive advantage in the investment industry and where it fits into the investment process to enable algorithmic trading strategies.

We will be covering the following topics in the chapter:

  • How this book is organized and who should read it
  • How ML has come to play a strategic role in algorithmic trading
  • How to design and execute a trading strategy
  • How ML adds value to an algorithmic trading strategy
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime