Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Game Development with WebAssembly

You're reading from   Hands-On Game Development with WebAssembly Learn WebAssembly C++ programming by building a retro space game

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781838644659
Length 596 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rick Battagline Rick Battagline
Author Profile Icon Rick Battagline
Rick Battagline
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introduction to WebAssembly and Emscripten FREE CHAPTER 2. HTML5 and WebAssembly 3. Introduction to WebGL 4. Sprite Animations in WebAssembly with SDL 5. Keyboard Input 6. Game Objects and the Game Loop 7. Collision Detection 8. Basic Particle System 9. Improved Particle Systems 10. AI and Steering Behaviors 11. Designing a 2D Camera 12. Sound FX 13. Game Physics 14. UI and Mouse Input 15. Shaders and 2D Lighting 16. Debugging and Optimization 17. Other Books You May Enjoy

What is asm.js?

One early attempt to achieve native-like speed in the web browser using JavaScript was asm.js. Although that goal was reached and asm.js was adopted by all the major browser vendors, it never achieved widespread adoption by developers. The beauty of asm.js is that it still runs in most browsers, even in those that do not optimize for it. The idea behind asm.js was that typed arrays could be used in JavaScript to fake a C++ memory heap. The browser simulates pointers and memory allocation in C++, as well as types. A well-designed JavaScript engine can avoid dynamic type checking. Using asm.js, browser makers could get around many of the optimization problems created by the dynamic nature of JavaScript, by just pretending that this version of JavaScript is not dynamically typed. Emscripten, designed as a C++-to-JavaScript compiler, quickly adopted asm.js as the subset of JavaScript that it would compile to because of its improved performance in most browsers. The performance improvements driven by asm.js lead the way to WebAssembly. The same engine modifications used to make asm.js perform well could be used to bootstrap the WebAssembly MVP. Only the addition of a bytecode-to-bytecode compiler was required to take the WebAssembly bytecode and directly convert it into the IR bytecode used by the browser.

At the time of writing, Emscripten does not compile directly from LLVM to WebAssembly. Instead, it compiles to asm.js and uses a tool called Binaryen to convert the asm.js output from Emscripten into WebAssembly.
You have been reading a chapter from
Hands-On Game Development with WebAssembly
Published in: May 2019
Publisher: Packt
ISBN-13: 9781838644659
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image