Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with Python

You're reading from   Hands-On Ensemble Learning with Python Build highly optimized ensemble machine learning models using scikit-learn and Keras

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781789612851
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Konstantinos G. Margaritis Konstantinos G. Margaritis
Author Profile Icon Konstantinos G. Margaritis
Konstantinos G. Margaritis
George Kyriakides George Kyriakides
Author Profile Icon George Kyriakides
George Kyriakides
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction and Required Software Tools
2. A Machine Learning Refresher FREE CHAPTER 3. Getting Started with Ensemble Learning 4. Section 2: Non-Generative Methods
5. Voting 6. Stacking 7. Section 3: Generative Methods
8. Bagging 9. Boosting 10. Random Forests 11. Section 4: Clustering
12. Clustering 13. Section 5: Real World Applications
14. Classifying Fraudulent Transactions 15. Predicting Bitcoin Prices 16. Evaluating Sentiment on Twitter 17. Recommending Movies with Keras 18. Clustering World Happiness 19. Another Book You May Enjoy

Random forests

Finally, we will utilize random forests to model our data. Although we expect that the ensemble to be able to utilize the information from additional lags and the rolling average, we will start with only 20 lags and the return percentages as inputs. Thus, our initial regressor is simply RandomForestRegressor(). This results in a model that does not perform very well. Its MSE is 19.02 and its Sharpe value is 0.11.

The following figure depicts the trades that the model generates:

Trades of random forest model

Improving random forest

In an attempt to improve our model, we try to restrict its overfitting capabilities, imposing a maximum depth of 3 for each tree. This results in considerable performance improvement...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image