Super-Resolution Generative Adversarial Network, or SRGAN, is a Generative Adversarial Network (GAN) that can generate super-resolution images from low-resolution images, with finer details and higher quality. CNNs were earlier used to produce high-resolution images that train quicker and achieve high-level accuracy. However, in some cases, they are incapable of recovering finer details and often generate blurry images. In this chapter, we will implement an SRGAN network in the Keras framework that will be capable of generating high-resolution images. SRGANs were introduced in the paper titled, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, by Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, and others, which is available at the following link: https://arxiv.org...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine