Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Forecasting Time Series Data with Facebook Prophet

You're reading from   Forecasting Time Series Data with Facebook Prophet Build, improve, and optimize time series forecasting models using the advanced forecasting tool

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781800568532
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Greg Rafferty Greg Rafferty
Author Profile Icon Greg Rafferty
Greg Rafferty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Getting Started
2. Chapter 1: The History and Development of Time Series Forecasting FREE CHAPTER 3. Chapter 2: Getting Started with Facebook Prophet 4. Section 2: Seasonality, Tuning, and Advanced Features
5. Chapter 3: Non-Daily Data 6. Chapter 4: Seasonality 7. Chapter 5: Holidays 8. Chapter 6: Growth Modes 9. Chapter 7: Trend Changepoints 10. Chapter 8: Additional Regressors 11. Chapter 9: Outliers and Special Events 12. Chapter 10: Uncertainty Intervals 13. Section 3: Diagnostics and Evaluation
14. Chapter 11: Cross-Validation 15. Chapter 12: Performance Metrics 16. Chapter 13: Productionalizing Prophet 17. Other Books You May Enjoy

Understanding additive versus multiplicative seasonality

In our Mauna Loa example in Chapter 2, Getting Started with Facebook Prophet, the yearly seasonality was constant at all values along the trend line. We added the values predicted by the seasonality curve to the values predicted by the trend curve to arrive at our forecast. There is an alternative mode of seasonality though, where we would multiply the trend curve by the seasonality. Take a look at this figure:

Figure 4.1 – Additive versus multiplicative seasonality

The upper curve demonstrates additive seasonality—the dashed lines that trace the bounds of the seasonality are parallel because the magnitude of seasonality does not change, only the trend does. In the lower curve though, these two dashed lines are not parallel. Where the trend is low, the spread caused by seasonality is low; but where the trend is high, the spread caused by seasonality is high. This can be modeled with multiplicative...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime