Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788834247
Length 546 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. What is Reinforcement Learning? FREE CHAPTER 2. OpenAI Gym 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. DQN Extensions 8. Stocks Trading Using RL 9. Policy Gradients – An Alternative 10. The Actor-Critic Method 11. Asynchronous Advantage Actor-Critic 12. Chatbots Training with RL 13. Web Navigation 14. Continuous Action Space 15. Trust Regions – TRPO, PPO, and ACKTR 16. Black-Box Optimization in RL 17. Beyond Model-Free – Imagination 18. AlphaGo Zero Other Books You May Enjoy Index

Connect4 results

To make the training fast, the hyperparameters of the training process were intentionally chosen to be small. For example, at every step of the self-play process, only 10 MCTS were performed, each with a minibatch size of eight. This, in combination with efficient minibatch MCTS and the fast game engine, made training very fast. Basically, after just one hour of training and 2,500 games played in the self-play mode, the produced model was sophisticated enough to be enjoyable to play against. Of course, the level of its play was well below even a kid's level, but it showed some rudimentary strategies and made mistakes in only every other move, which was good progress.

The training was left running for a day, which resulted in 55k games played by a best model and, in total, 102 best model rotations. The training dynamics are shown in the following charts:

Connect4 results

Figure 3: Training convergence

The tournament verification was complicated by the number of different models, as...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime