Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow 2 and Keras

You're reading from   Deep Learning with TensorFlow 2 and Keras Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781838823412
Length 646 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Neural Network Foundations with TensorFlow 2.0 FREE CHAPTER 2. TensorFlow 1.x and 2.x 3. Regression 4. Convolutional Neural Networks 5. Advanced Convolutional Neural Networks 6. Generative Adversarial Networks 7. Word Embeddings 8. Recurrent Neural Networks 9. Autoencoders 10. Unsupervised Learning 11. Reinforcement Learning 12. TensorFlow and Cloud 13. TensorFlow for Mobile and IoT and TensorFlow.js 14. An introduction to AutoML 15. The Math Behind Deep Learning 16. Tensor Processing Unit 17. Other Books You May Enjoy
18. Index

Towards a deep learning approach

While playing with handwritten digit recognition, we came to the conclusion that the closer we get to the accuracy of 99%, the more difficult it is to improve. If we want more improvement, we definitely need a new idea. What are we missing? Think about it.

The fundamental intuition is that in our examples so far, we are not making use of the local spatial structure of images. In particular, this piece of code transforms the bitmap representing each written digit into a flat vector where the local spatial structure (the fact that some pixels are closer to each other) is gone:

# X_train is 60000 rows of 28x28 values; we  --> reshape it as in # 60000 x 784.
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)

However, this is not how our brain works. Remember that our vision is based on multiple cortex levels, each one recognizing more and more structured information, still preserving the locality. First, we see single pixels, then from those, we recognize simple geometric forms, and then more and more sophisticated elements such as objects, faces, human bodies, animals, and so on.

In Chapter 4, Convolutional Neural Networks we will see that a particular type of deep learning network, known as a Convolutional Neural Network (in short, CNN) has been developed by taking into account both the idea of preserving the local spatial structure in images (and more generally, in any type of information that has a spatial structure) and the idea of learning via progressive levels of abstraction: with one layer you can only learn simple patterns, with more than one layer you can learn multiple patterns. Before discussing CNNs, we need to discuss some aspects of TensorFlow architecture and have a practical introduction to a few additional machine learning concepts. This will be the topic of the upcoming chapters.

You have been reading a chapter from
Deep Learning with TensorFlow 2 and Keras - Second Edition
Published in: Dec 2019
Publisher: Packt
ISBN-13: 9781838823412
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image