Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Decision Makers

You're reading from   Data Science for Decision Makers Enhance your leadership skills with data science and AI expertise

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781837637294
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jon Howells Jon Howells
Author Profile Icon Jon Howells
Jon Howells
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Understanding Data Science and Its Foundations
2. Chapter 1: Introducing Data Science FREE CHAPTER 3. Chapter 2: Characterizing and Collecting Data 4. Chapter 3: Exploratory Data Analysis 5. Chapter 4: The Significance of Significance 6. Chapter 5: Understanding Regression 7. Part 2: Machine Learning – Concepts, Applications, and Pitfalls
8. Chapter 6: Introducing Machine Learning 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Unsupervised Machine Learning 11. Chapter 9: Interpreting and Evaluating Machine Learning Models 12. Chapter 10: Common Pitfalls in Machine Learning 13. Part 3: Leading Successful Data Science Projects and Teams
14. Chapter 11: The Structure of a Data Science Project 15. Chapter 12: The Data Science Team 16. Chapter 13: Managing the Data Science Team 17. Chapter 14: Continuing Your Journey as a Data Science Leader 18. Index 19. Other Books You May Enjoy

Characteristics of regression and classification algorithms

In this section, we’ll explore the characteristics of a range of different regression and classification algorithms. We will explore their practical applications and how they can be used to drive decision-making in various industries.

Regression algorithms

We have already covered regression, which is a form of supervised machine learning. Regression algorithms are used when the output or target variable is continuous or numerical. They are primarily used for forecasting, predicting trends, and determining relationships between variables. Beyond the ordinary least squares regression we have already covered, there are other, more advanced variations of regression. These variations can be used to account for different interactions between variables, or to mitigate overfitting by applying what is known as regularization.

Polynomial regression

Polynomial regression extends linear regression by adding extra predictors...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime