Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with Python

You're reading from   Data Analysis with Python A Modern Approach

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789950069
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Taieb David Taieb
Author Profile Icon David Taieb
David Taieb
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Programming and Data Science – A New Toolset FREE CHAPTER 2. Python and Jupyter Notebooks to Power your Data Analysis 3. Accelerate your Data Analysis with Python Libraries 4. Publish your Data Analysis to the Web - the PixieApp Tool 5. Python and PixieDust Best Practices and Advanced Concepts 6. Analytics Study: AI and Image Recognition with TensorFlow 7. Analytics Study: NLP and Big Data with Twitter Sentiment Analysis 8. Analytics Study: Prediction - Financial Time Series Analysis and Forecasting 9. Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis 10. The Future of Data Analysis and Where to Develop your Skills A. PixieApp Quick-Reference Other Books You May Enjoy Index

Data science strategy

If data science is to continue to grow and graduate into a core business activity, companies must find a way to scale it across all layers of the organization and overcome all the difficult challenges we discussed earlier. To get there, we identified three important pillars that architects planning a data science strategy should focus on, namely, data, services, and tools:

Data science strategy

Three pillars of dat science at scale

  • Data is your most valuable resource: You need a proper data strategy to make sure data scientists have easy access to the curated contents they need. Properly classifying the data, set appropriate governance policies, and make the metadata searchable will reduce the time data scientists spend acquiring the data and then asking for permission to use it. This will not only increase their productivity, it will also improve their job satisfaction as they will spend more time working on doing actual data science.

    Setting a data strategy that enables data scientists to easily access high-quality data that's relevant to them increases productivity and morale and ultimately leads to a higher rate of successful outcomes.

  • Services: Every architect planning for data science should be thinking about a service-oriented architecture (SOA). Contrary to traditional monolithic applications where all the features are bundled together into a single deployment, a service-oriented system breaks down functionalities into services which are designed to do a few things but to do it very well, with high performance and scalability. These systems are then deployed and maintained independently from each other giving scalability and reliability to the whole application infrastructure. For example, you could have a service that runs algorithms to create a deep learning model, another one would persist the models and let applications run it to make predictions on customer data, and so on.

    The advantages are obvious: high reusability, easier maintenance, reduced time to market, scalability, and much more. In addition, this approach would fit nicely into a cloud strategy giving you a growth path as the size of your workload increases beyond existing capacities. You also want to prioritize open source technologies and standardize on open protocols as much as possible.

    Breaking processes into smaller functions infuses scalability, reliability, and repeatability into the system.

  • Tools do matter! Without the proper tools, some tasks become extremely difficult to complete (at least that's the rationale I use to explain why I fail at fixing stuff around the house). However, you also want to keep the tools simple, standardized, and reasonably integrated so they can be used by less skilled users (even if I was given the right tool, I'm not sure I would have been able to complete the house fixing task unless it's simple enough to use). Once you decrease the learning curve to use these tools, non-data scientist users will feel more comfortable using them.

    Making the tools simpler to use contributes to breaking the silos and increases collaboration between data science, engineering, and business teams.

You have been reading a chapter from
Data Analysis with Python
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781789950069
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image