Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with IBM SPSS Statistics

You're reading from   Data Analysis with IBM SPSS Statistics Implementing data modeling, descriptive statistics and ANOVA

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787283817
Length 446 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Ken Stehlik-Barry Ken Stehlik-Barry
Author Profile Icon Ken Stehlik-Barry
Ken Stehlik-Barry
Anthony Babinec Anthony Babinec
Author Profile Icon Anthony Babinec
Anthony Babinec
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Installing and Configuring SPSS FREE CHAPTER 2. Accessing and Organizing Data 3. Statistics for Individual Data Elements 4. Dealing with Missing Data and Outliers 5. Visually Exploring the Data 6. Sampling, Subsetting, and Weighting 7. Creating New Data Elements 8. Adding and Matching Files 9. Aggregating and Restructuring Data 10. Crosstabulation Patterns for Categorical Data 11. Comparing Means and ANOVA 12. Correlations 13. Linear Regression 14. Principal Components and Factor Analysis 15. Clustering 16. Discriminant Analysis

Summary

This chapter presented extensive examples of principal components analysis and factor analysis. The PCA analysis began with a flat file of individual observations and produced a two-component solution for aggregate state-level (plus DC) crime rates for seven violent crimes. This analysis led to insights into both the variables and the observations in the analysis. The FA analysis began with a correlation matrix, of various ability tests, on 112 individuals, and produced a two-factor solution that showed evidence of two subsets of tests, along with a general item that loaded on both factors.

In the next chapter, we will look at cluster analysis, which is a technique for grouping observations into clusters that are hopefully homogeneous and well separated.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image